sin sin cos cos tg tg ctg ctg ab cc ba cc ab ba ba ab αβ αβ αβ αβ = = = = = = = = sin cos sin cis cos sin 221 tg ctg αα α α α α α α + = = = 1−strana Većinu ovih zadataka sam rješavao daleke 1998.g. na računalu ATARI ovo su samo skenirane stranice iz te skripte pa vam otisak možda neće uvijek biti najbolje kvalitete Tangens obliczamy pamiętając, że tgα= sinα cosα Czyli tgα= sinα cosα = 1 4 − √ 15 4 = − 1 √ 15 = − √ 15 15 cotangens to odwrotność tangensa, czyli: ctgα= − √ 15 Tomasz Lechowski Batory 1LO 12 kwietnia 2018 8 / 13 For memorising cos 0°, cos 30°, cos 45°, cos 60° and cos 90°. Cos is the opposite of sin. We should learn it like. cos 0° = sin 90° = 1. cos 30° = sin 60° = √3/2. cos 45° = sin 45° = 1/√2. cos 60° = sin 30° = 1/2. cos 90° = sin 0° = 0. So, for cos, it will be like. Dowód wzorów dla kąta ostrego w trójkącie prostokątnym. Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt α. Z definicji funkcji trygonometrycznych wiemy, że: sin α = a c oraz cos α = b c oraz tg α = a b oraz ctg α = b a. Zatem: tg α ⋅ ctg α = a b ⋅ b a = 1. oraz: sin α = y r tg α = y x cos α = x r ctg α = x y Słownie powyższe definicje można zapisać tak: Sinusem kąta α nazywamy stosunek rzędnej punktu P do odległości tego punktu od początku układu współrzędnych. 5 5) Transformisati u proizvod . sin x+sin y +sin z, ako je x+y +z =π Rešenje: [ ] sin sin sin sin sin sin ( ) sin sin sin( ) Upotrebimo sin sin 2sin cos i sin 2sin cos 2 2 22 2sin cos 2sin cos Izvučemo zajednički 2sin . Jedynka trygonometryczna Dla dowolnego kąta \(\alpha \) zachodzi równanie: \[\sin^{2} \alpha +\cos^{2} \alpha =1\] Dowód jedynki trygonometrycznej dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt ostry \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \left ( \frac{a}{c} \right )^2+\left ( \frac{b}{c} \right )^2=\frac{a^2}{c^2}+\frac{b^2}{c^2}=\frac{a^2+b^2}{c^2}\] Z twierdzenia Pitagorasa wiemy, że: \[a^2+b^2=c^2\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \frac{a^2+b^2}{c^2} = \frac{c^2}{c^2}=1. \ _\blacksquare \] Wyjaśnienie sposobu zapisu Wyrażenie \(\sin^{2} \alpha\), to \(\sin \alpha \) podniesiony do drugiej potęgi. Czyli: \[\sin^{2} \alpha = (\sin \alpha)^2\] Zatem np. \(\sin \alpha = \frac{2}{3}\), to: \(\sin^{2} \alpha = \left ( \frac{2}{3} \right )^2=\frac{4}{9}\). Analogicznie interpretujemy \(\cos^{2} \alpha, \operatorname{tg}^2 \alpha \text{ i }\operatorname{ctg}^2\alpha \) oraz wyższe potęgi funkcji trygonometrycznych. Wzory na tangens i cotangens. Dla dowolnego kąta \(\alpha \) (dla którego funkcje trygonometryczne są określone) zachodzą wzory: \(\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =1\) \(\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\) \(\operatorname{ctg} \alpha =\frac{\cos \alpha }{\sin \alpha }\) Powyższe wzory są prawdziwe dla każdego kąta ostrego \(\alpha \) oraz dla wszystkich kątów, dla których funkcje są określone (tzn. nie pojawia się dzielenie przez \(0\) w mianowniku). Dowód wzorów dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\qquad \text{oraz}\qquad\operatorname{tg} \alpha =\frac{a}{b}\qquad \text{oraz}\qquad \operatorname{ctg} \alpha =\frac{b}{a}\] Zatem: \[\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =\frac{a}{b}\cdot \frac{b}{a}=1\] oraz: \[\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{a}{c}}{\frac{b}{c}}=\frac{a}{c}\cdot \frac{c}{b}=\frac{a}{b}=\operatorname{tg} \alpha \] a także: \[\frac{\cos \alpha }{\sin \alpha }=\frac{\frac{b}{c}}{\frac{a}{c}}=\frac{b}{c}\cdot \frac{c}{a}=\frac{b}{a}=\operatorname{ctg} \alpha. \ _\blacksquare\] Gdy znamy wartość przynajmniej jednej funkcji trygonometrycznej, to za pomocą powyższych wzorów możemy obliczyć wartości wszystkich pozostałych funkcji trygonometrycznych. Oblicz \(\sin \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\cos \alpha =\frac{1}{3}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\sin^{2} \alpha +\left ( \frac{1}{3} \right )^2 &= 1\\[10pt]\sin^{2} \alpha +\frac{1}{9} &= 1\\[10pt]\sin^{2} \alpha &= \frac{8}{9}\\[10pt]\sin \alpha &=\sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}}=\frac{2\sqrt{2}}{3}\cdot \frac{3}{1}=2\sqrt{2}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{2\cdot 2}=\frac{\sqrt{2}}{4}\] Oblicz \(\cos \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\sin \alpha =\frac{2}{5}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\left ( \frac{2}{5} \right )^2+\cos^{2} \alpha &= 1\\[10pt]\frac{4}{25}+\cos^{2} \alpha &= 1\\[10pt]\cos^{2} \alpha &= \frac{21}{25}\\[10pt]\cos \alpha &=\sqrt{\frac{21}{25}}=\frac{\sqrt{21}}{5} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}=\frac{2}{5}\cdot \frac{5}{\sqrt{21}}=\frac{2}{\sqrt{21}}=\frac{2\sqrt{21}}{21}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{\frac{2}{\sqrt{21}}}=\frac{\sqrt{21}}{2}\] Oblicz \(\sin \alpha \text{, }\cos \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\operatorname{tg} \alpha =7\). Najłatwiej jest wyliczyć cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{7}\] Teraz skorzystamy ze wzoru na tangens oraz jedynki trygonometrycznej i ułożymy układ równań z dwiema niewiadomymi. Tymi niewiadomymi będą oczywiście szukane \(\sin \alpha \text{ i }\cos \alpha \). \[\begin{split} &\begin{cases}\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \\[10pt]&\begin{cases}7 =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \end{split}\] Z pierwszego równania możemy wyliczyć np. \(\sin \alpha \): \[\begin{split} 7 &=\frac{\sin \alpha }{\cos \alpha }\\[6pt]7\cos \alpha &=\sin \alpha \\[6pt]\sin \alpha &=7\cos \alpha \end{split}\] Teraz wyznaczonego sinusa możemy podstawić do jedynki trygonometrycznej. W rezultacie otrzymamy równanie z jedną niewiadomą ( \(\cos \alpha \) ): \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &=1\\[6pt](7\cos \alpha )^2 +\cos^{2} \alpha &=1\\[6pt]49 \cos^{2} \alpha +\cos^{2} \alpha &=1\\[6pt]50 \cos^{2} \alpha &=1\\[6pt]\cos^{2} \alpha &=\frac{1}{50}\\[6pt]\cos \alpha &=\sqrt{\frac{1}{50}}=\frac{\sqrt{50}}{50}=\frac{5\sqrt{2}}{50}=\frac{\sqrt{2}}{10} \end{split}\] Teraz wyliczymy sinus korzystając z wyznaczonego wcześniej wzoru: \[\sin \alpha =7\cos \alpha =7\cdot \frac{\sqrt{2}}{10}=\frac{7\sqrt{2}}{10}\] Oceń kalkulator trygonometryczny: (7 votes, average: 2,29 out of 5)Obliczanie funkcji trygonometrycznych – jak działa? Powyższy kalkulator funkcji trygonometrycznych oblicza wartości tg, ctg, sin oraz cos dla podanego kąta wyrażonego w radianach. Jedynym polem, które należy wpisać do kalkulatora jest wartość kąta, dla której użytkownik chce przeprowadzić stosowne obliczenia. Po wciśnięciu przycisku OBLICZ zostaną wyświetlone wartości dla tangensa, cotangensa, sinusa oraz cosinusa danego kąta. Ten kalkulator należy do kategorii matematyka. Możesz wrócić do strony kategorii lub też skorzystać z wyszukiwarki kalkulatorów, która znajduje się na stronie głównej. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym \[ \sin \alpha =\frac{a}{c} \] \[ \cos \alpha =\frac{b}{c} \] \[ \tan \alpha =\frac{a}{b} \] \[ \sin \beta =\frac{b}{c} \] \[ \cos \beta =\frac{a}{c} \] \[ \tan \beta =\frac{b}{a} \] Parzystość i nieparzystość funkcji trygonometrycznych \[ \sin \left(- x\right)=- \sin x \] \[ \cos \left(-x \right)=\cos \left(x \right) \] \[ \tan \left(-x \right)=- \tan x \] \[ ctg\left(-x \right)=- ctg\left(x \right) \] Znaczniki funkcji trygonometrycznych w poszczególnych ćwiartkach I II III IV sin + + – – cos + – – + tg + – + – ctg + – + – Wykresy funkcji trygonometrycznych Wykres funkcji sinus Wykres funkcji cosinus Wykres funkcji tangens Związki między funkcjami tego samego kąta \[ \sin^{2} \alpha + \cos^{2} \alpha =1 \] \( (jedynka \, trygonometryczna) \) \[ \tan \alpha =\frac{ \sin \alpha }{\cos \alpha } \] \( gdy \; \cos \alpha \neq 0 \; i \; \sin \alpha \neq 0 \) Tabela wartości funkcji trygonometrycznych dla niektórych miar kąta Funkcje sumy i różnicy katów Dla dowolnych kątów \( \alpha \) i \( \beta \) zachodzą równości: \[ \sin \left(\alpha +\beta \right)=\sin \alpha \cos \beta +\cos \alpha \sin \beta \]\[ \cos \left(\alpha +\beta \right)=\cos \alpha \cos \beta – \sin \alpha \sin \beta \]\[ \sin \left(\alpha – \beta \right)=\sin \alpha \cos \beta – \cos \alpha \sin \beta \]\[ \cos \left(\alpha – \beta \right)=\cos \alpha \cos \beta + \sin \alpha \sin \beta \] Ponadto mamy równości: \[ \tan \left(\alpha +\beta \right)=\frac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta } \]\[ \tan \left(\alpha -\beta \right)=\frac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta } \] które zachodzą zawsze, gdy są określone i mianownik prawej strony nie jest zerem. Funkcje podwojonego kąta \[ \sin 2\alpha =2\sin \alpha \cos \alpha \] \[ \cos \alpha = \cos^{2} \alpha- \sin^{2} \alpha = 1- 2 \sin^{2} \alpha \] \[ 1- 2 \sin^{2} \alpha = 2 \cos^{2} \alpha – 1 \] \[ \tan2 \alpha = \frac{2 \tan \alpha}{1-\tan^2 \alpha} \] Sumy, różnice i iloczyny funkcji trygonometrycznych \[ \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha – \beta}{2} \]\[ \sin \alpha – \sin \beta = 2 \sin \frac{\alpha – \beta}{2} \cos \frac{\alpha + \beta}{2} \]\[ \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha – \beta}{2} \]\[ \cos \alpha – \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha – \beta}{2} \] Wybrane wzory redukcyjne \[ \sin \left(90 ^{\circ} + \alpha \right) = \cos \alpha \] \[ \sin \left(90 ^{\circ} – \alpha \right) = \cos \alpha \] \[ \sin \left(180 ^{\circ} + \alpha \right) = – \sin \alpha \] \[ \sin \left(180 ^{\circ} – \alpha \right) = \sin \alpha \] \[ \cos \left(90 ^{\circ} + \alpha \right) = -\sin \alpha \] \[ \cos \left(90 ^{\circ} – \alpha \right) = \sin \alpha \] \[ \cos \left(180 ^{\circ} + \alpha \right) = -\cos \alpha \] \[ \cos \left(180 ^{\circ} – \alpha \right) = -\cos \alpha \] \[ \tan \left(180 ^{\circ} + \alpha \right) = \tan \alpha \] \[ \tan \left(180 ^{\circ} – \alpha \right) = -\tan \alpha \] Okresowość funkcji trygonometrycznych \[ \sin \left(\alpha +k*360^{ \circ}\right)=\sin \alpha \]\[ \cos \left(\alpha +k*360^{ \circ}\right)=\cos \alpha \]\[ \tan \left(\alpha +k*180^{ \circ}\right)=\tan \alpha \] k – całkowite Uzmimo x-osu i y-osu koordinatnog sistema i O za koordinatni početak. Kružnicu sa centrom u O poluprečnika = 1 zovemo trigonometrijska kružnica ili jedinična kružnica. Ako je P tačka kružnice i t ugao između PO i x onda: x-koordinatu tačke P zovemo kosinus ugla t. Pišemo: cos(t); y-koordinatu tačke P zovemo sinus ugla t. Pišemo: sin(t); broj sin(t)/cos(t) zovemo tangens ugla t. Pišemo: tg(t); broj cos(t)/sin(t) zovemo kotangens ugla t. Pišemo: ctg(t). Sinusna funkcija sin : R -> R Sve trigonometrijske funkcije su periodične. Period sinusne funkcije je 2π. Kodomen: [-1,1]. Kosinusna funkcija cos : R -> R Period kosinusne funkcije je 2π. Kodomen: [-1,1]. Tangensna funkcija tg : R -> R Kodomen: R. Period je π a funkcija nije definisana za x = (π/2) + kπ, k=0,1,2,... Kotangensna funkcija ctg : R -> R Kodomen: R. Period je π a funkcija nije definisana za x = kπ, k=0,1,2,... Vrednosti sin, cos, tg, ctg za uglove 0°, 30°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360° $\alpha^o$ $0^o$ $30^o$ $45^o$ $60^o$ $90^o$ $120^o$ $135^o$ $150^o$ $180^o$ $210^o$ $225^o$ $240^o$ $270^o$ $300^o$ $315^o$ $330^o$ $360^o$ $\alpha rad$ $0$ $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ $\pi$ $\frac{7\pi}{6}$ $\frac{5\pi}{4}$ $\frac{4\pi}{3}$ $\frac{3\pi}{2}$ $\frac{5\pi}{3}$ $\frac{7\pi}{4}$ $\frac{11\pi}{6}$ $2\pi$ $sin\alpha$ $0$ $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$ $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ $-1$ $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{1}{2}$ $0$ $cos\alpha$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$ $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ $-1$ $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{1}{2}$ $0$ $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ $1$ $tg\alpha$ $0$ $\frac{\sqrt{3}}{3}$ $1$ $\sqrt{3}$ $-$ $-\sqrt{3}$ $-1$ $-\frac{\sqrt{3}}{3}$ $0$ $\frac{\sqrt{3}}{3}$ $1$ $\sqrt{3}$ $-$ $-\sqrt{3}$ $-1$ $-\frac{\sqrt{3}}{3}$ $0$ $ctg\alpha$ $-$ $\sqrt{3}$ $1$ $\frac{\sqrt{3}}{3}$ $0$ $-\frac{\sqrt{3}}{3}$ $-1$ $-\sqrt{3}$ $-$ $\sqrt{3}$ $1$ $\frac{\sqrt{3}}{3}$ $0$ $-\frac{\sqrt{3}}{3}$ $-1$ $-\sqrt{3}$ $-$ Najlakši način za pamćenje vrednosti funkcija sin i cos za uglove 0°, 30°, 60°, 90°: sin([0, 30, 45, 60, 90]) = cos([90, 60, 45, 30, 0]) = sqrt([0, 1, 2, 3, 4]/4) Trigonometrijski identiteti Uglu od t radiana odgovara tačno jedna tačka P(cos(t),sin(t)) na jediničnoj kružnici. Udaljenost [OP] = 1. Izračunavanje rastojanja tačke P za svako t: cos2(t) + sin2(t) = 1 Ako je t + t' = 180° onda je: sin(t) = sin(t') cos(t) = -cos(t') tg(t) = -tg(t') ctg(t) = -ctg(t') Ako je t + t' = 90° onda je: sin(t) = cos(t') cos(t) = sin(t') tg(t) = ctg(t') ctg(t) = tg(t') $-\alpha$ $90^\circ - \alpha$ $90^\circ + \alpha$ $180^\circ - \alpha$ $\textrm{ sin }$ $-\textrm{ sin }\alpha$ $\textrm{ cos }\alpha$ $\textrm{ cos } \alpha$ $\textrm{ sin }\alpha$ $\textrm{ cos }$ $\textrm{ cos }\alpha$ $\textrm{ sin }\alpha$ $-\textrm{ sin} \alpha$ $-\textrm{ cos }\alpha$ $\textrm{ tg }$ $-\textrm{ tg }\alpha$ $\textrm{ ctg }\alpha$ $-\textrm{ ctg } \alpha$ $-\textrm{ tg }\alpha$ $\textrm{ ctg }$ $-\textrm{ ctg }\alpha$ $\textrm{ tg }\alpha$ $-\textrm{ tg } \alpha$ $-\textrm{ ctg }\alpha$ Trigonometrijske formule Formule polovičnog ugle $\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili || - ako $\frac{\alpha}{2}$ leži u kvadrantu ||| ili |V $\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili |V - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili ||| $tg\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili ||| - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili |V $\textrm{ ctg }\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili ||| - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili |V $\textrm{ tg }\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}=\csc\alpha-\textrm{ ctg }\alpha$ $\textrm{ ctg }\frac{\alpha}{2} = \frac{\sin\alpha}{1-\cos\alpha} = \frac{1+\cos\alpha}{\sin\alpha}=\csc\alpha+\textrm{ ctg }\alpha$ Formule dvostrukog/trostrukog ugla $\sin(2u) = 2\sin(u)\cdot \cos(u)$ $\cos(2u) = \cos^2(u) - \sin^2(u) = 2\cos^2(u) - 1 = 1 - 2\sin^2(u)$ $\textrm{ tg }(2u) = \frac{2\textrm{ tg }(u)}{1- \textrm{ tg }^2(u)}$ $\cos(2u) = \frac{1 - \textrm{ tg }^2(u)}{1 + \textrm{ tg }^2(u)}$ $\sin(2u) = \frac{2\textrm{ tg }(u)}{1 + \textrm{ tg }^2(u)}$ $\sin3\alpha = 3\sin\alpha - 4 \sin^3\alpha$ $\cos3\alpha = 4\cos^3\alpha - 3 \cos\alpha$ $\textrm{ tg }3\alpha=\frac{3\textrm{ tg }\alpha - \textrm{ tg }^3\alpha}{1-3\textrm{ tg }^2\alpha}$ $\textrm{ ctg }3\alpha=\frac{\textrm{ ctg }^3\alpha-3\textrm{ ctg }\alpha}{3\textrm{ ctg }^2\alpha-1}$ $\sin4\alpha = 4\cos^3\alpha\sin\alpha - 4\cos\alpha \sin^3\alpha$ $\cos4\alpha = \cos^4\alpha - 6\cos^2\alpha\sin^2\alpha + \sin^4\alpha$ $\textrm{ tg }4\alpha=\frac{4\textrm{ tg }\alpha - 4\textrm{ tg }^3\alpha}{1-6\textrm{ tg }^2\alpha+\textrm{ tg }^4\alpha}$ $\textrm{ ctg }4\alpha=\frac{\textrm{ ctg }^4\alpha-6\textrm{ ctg }^2\alpha+1}{4\textrm{ ctg }^3\alpha-4\textrm{ ctg }\alpha}$ Stepenovanje funkcija $\sin^2(\alpha)=\frac{1 - \cos(2\alpha)}{2}$ $\sin^3(\alpha)=\frac{3\sin\alpha - \sin(3\alpha)}{4}$ $\sin^4(\alpha)=\frac{\cos(4\alpha) - 4\cos(2\alpha) + 3}{8}$ $\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}$ $\cos^3(\alpha)=\frac{3\cos\alpha + \cos(3\alpha)}{4}$ $\cos^4(\alpha)=\frac{4\cos(2\alpha) + \cos(4\alpha) + 3}{8}$ Funkcije zbira i razlike $\sin(\alpha + \beta) = \sin(\alpha)\cdot \cos(\beta) + \cos(\alpha)\cdot \sin(\beta)$ $\sin(\alpha - \beta) = \sin(\alpha)\cdot \cos(\beta) - \cos(\alpha)\cdot \sin(\beta)$ $\cos(\alpha + \beta) = \cos(\alpha)\cdot \cos(\beta) - \sin(\alpha)\cdot \sin(\beta)$ $\cos(\alpha - \beta) = \cos(\alpha)\cdot \cos(\beta) + \sin(\alpha)\cdot \sin(\beta)$ $\textrm{ tg }(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}=\frac{\sin(\alpha)\cdot \cos(\beta) + \cos(\alpha)\cdot \sin(\beta)}{\cos(\alpha)\cdot \cos(\beta) - \sin(\alpha)\cdot \sin(\beta)}$ $\textrm{ tg }(\alpha + \beta) = \frac{\textrm{ tg }(\alpha) + \textrm{ tg }(\beta)}{1 - \textrm{ tg }(\alpha)\cdot\textrm{ tg }(\beta)}$ $\textrm{ ctg }(\alpha \pm \beta) = \frac{\textrm{ ctg }(\beta)\textrm{ ctg }(\alpha)\mp 1}{\textrm{ ctg }(\beta)\pm cot(\alpha)}=\frac{1\mp \textrm{ tg }(\alpha)\textrm{ tg }(\beta)}{\textrm{ tg }(\alpha)\pm \textrm{ tg }(\beta)}$ $\sin(\alpha + \beta + \gamma) = \sin\alpha \cos\beta \cos\gamma + \cos\alpha \sin\beta \cos\gamma + \cos\alpha \cos\beta \sin\gamma - \sin\alpha \sin\beta \sin\gamma$ $\cos(\alpha + \beta + \gamma) = \cos\alpha \cos\beta \cos\gamma - \sin\alpha \sin\beta \cos\gamma - \sin\alpha \cos\beta \sin\gamma $ $- \sin\alpha \cos\beta \sin\gamma - \cos\alpha \sin\beta \sin\gamma$ $\textrm{ tg }(\alpha + \beta + \gamma) = \frac{\textrm{ tg }\alpha + \textrm{ tg }\beta + \textrm{ tg }\gamma - \textrm{ tg }\alpha\cdot \textrm{ tg }\beta \cdot \textrm{ tg }\gamma}{1 - \textrm{ tg }\alpha\cdot\textrm{ tg }\beta - \textrm{ tg }\beta\cdot\textrm{ tg }\gamma - \textrm{ tg }\alpha\cdot\textrm{ tg }\gamma}$ Zbir i razlika funkcija $\textrm{ sin } \alpha + \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha - \beta}{2}$ $\textrm{ sin } \alpha - \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha - \beta}{2} \textrm{ cos }\frac{\alpha + \beta}{2}$ $\textrm{ cos } \alpha + \textrm{ cos }\beta = 2 \textrm{ cos }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha - \beta}{2}$ $\textrm{ cos } \alpha - \textrm{ cos }\beta = -2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ sin }\frac{\alpha - \beta}{2}$ $\textrm{ tg }\alpha + \textrm{ tg }\beta = \frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos\beta}$ $\textrm{ tg }\alpha - \textrm{ tg }\beta = \frac{\sin(\alpha-\beta)}{\cos\alpha\cdot\cos\beta}$ $\textrm{ ctg }\alpha + \textrm{ ctg }\beta = \frac{\sin(\alpha+\beta)}{\sin\alpha\cdot\sin\beta}$ $\textrm{ ctg }\alpha - \textrm{ ctg }\beta = \frac{-\sin(\alpha-\beta)}{\sin\alpha\cdot\sin\beta}$ $\textrm{ sin }\alpha \textrm{ sin }\beta = \frac{1}{2} (\textrm{ cos }(\alpha - \beta) - \textrm{ cos }(\alpha + \beta))$ $\textrm{ cos }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ cos }(\alpha - \beta) + \textrm{ cos }(\alpha + \beta))$ $\textrm{ sin }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ sin }(\alpha + \beta) + \textrm{ sin }(\alpha - \beta))$ $\textrm{ tg }\alpha\textrm{ tg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ tg }\beta}{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}=-\frac{\textrm{ tg }\alpha-\textrm{ tg }\beta}{\textrm{ ctg }\alpha-\textrm{ ctg }\beta}$ $\textrm{ ctg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}{\textrm{ tg }\alpha+\textrm{ tg }\beta}$ $\textrm{ tg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ ctg }\beta}{\textrm{ ctg }\alpha+\textrm{ tg }\beta}$ $\sin\alpha\sin\beta\sin\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)+\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)-\sin(\alpha+\beta+\gamma)\big)$ $\cos\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)+\cos(\alpha+\beta+\gamma)\big)$ $\sin\alpha\sin\beta\cos\gamma = \frac{1}{4}\big(-\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)-\cos(\alpha+\beta+\gamma)\big)$ $\sin\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)-\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)+\sin(\alpha+\beta+\gamma)\big)$ $\sin\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1+\textrm{tg}^2\frac{\alpha}{2}}$ $\cos\alpha = \frac{1-\textrm{tg}^2\frac{\alpha}{2}}{1+\textrm{tg}^2\frac{\alpha}{2}}$ $\textrm{tg}\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1-\textrm{tg}^2\frac{\alpha}{2}}$ $\textrm{ctg}\alpha = \frac{1-\textrm{tg}^2\frac{\alpha}{2}}{2\textrm{tg}\frac{\alpha}{2}}$ $1\pm\sin\alpha=2\sin^2\big(\frac{\pi}{4}\pm \frac{\alpha}{2}\big)=2\cos^2\big(\frac{\pi}{4}\mp \frac{\alpha}{2}\big)$ $\frac{1-\sin\alpha}{1+\sin\alpha} = \textrm{ tg }^2(\frac{\pi}{4}-\frac{\alpha}{2})$ $\frac{1-\cos\alpha}{1+\cos\alpha} = \textrm{ tg }^2\frac{\alpha}{2}$ $\frac{1-\textrm{ tg }\alpha}{1+\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}-\alpha)$ $\frac{1+\textrm{ tg }\alpha}{1-\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}+\alpha)$ $\frac{\textrm{ ctg }\alpha + 1}{\textrm{ ctg }\alpha - 1} = \textrm{ ctg }(\frac{\pi}{4}-\alpha)$ $\textrm{ tg }\alpha + \textrm{ ctg }\alpha = \frac{2}{\sin2\alpha}$ $\textrm{ tg }\alpha - \textrm{ ctg }\alpha = -2\textrm{ ctg }2\alpha$ Wykres funkcji sinus wygląda tak: Wykres funkcji cosinus wygląda tak: Wykres funkcji tangens wygląda tak: Wykres funkcji cotangens wygląda tak: Na powyższych rysunkach pokazałem jak najlepiej rysować wykresy funkcji trygonometrycznych na kratkowanym papierze. Z takich dokładnych rysunków można np.: odczytać wartości funkcji trygonometrycznych dla konkretnych kątów, wyprowadzać wzory redukcyjne, rozwiązywać równania i nierówności trygonometryczne. Wykresy wszystkich funkcji trygonometrycznych dokładniej omówimy sobie w kolejnych rozdziałach.

tablica trygonometryczna sin cos tg ctg